平成将棋合戦ぽんぽこ PR文書

スタジオ・タヌキ 野田久順 河野明男

目次

- 平成将棋合戦ぽんぽこ
- ・ 主な工夫点
 - 自動化 · 効率化
 - elmo型強化学習

平成将棋合戦ぽんぽこ

- ・ 磯崎元洋氏(やねうらお)による『やねうら 王』から派生したコンピューター将棋ソ フトです
- 開発者がかけた手間に対するレーティン グ向上比を高めることを目標としていま す
 - 上記を実現するための技術的な工夫として、 開発プロセスの自動化・効率化に力を入れて います

平成将棋合戦(ぽんぽこ(続)

- ソフト名の元ネタはスタジオ・ジブリの映像作品『平成狸合戦ぽんぽこ』です
- 第4回電王トーナメントの開発者インタビュー映像をタイムシフトで見ていたところ、『平成〇〇合戦ぽんぽこ』というコメントがあったので採用させていただきました

主な工夫点

- 開発プロセスの自動化・効率化
- elmo絞り

開発プロセスの自動化・効率化

- 全ての実験タスクを Jenkins上で管理することにより、効率的な開発を実現しています
 - タスクのキューイング
 - タスク終了後のメール通知
 - タスク進捗状況のブラウザ上での確認

elmo型強化学習

- ・第27回世界コンピュータ将棋選手権で 『elmo』が採用した、「浅い探索の評価 値で深い深さの探索の評価値と勝率を近 似する強化学習手法」を採用しています。
- 通称『elmo絞り』

自己対戦の棋譜を用いた 大規模機械学習(続) ※第4回電エトーナメントPR文書より抜粋・改変

• 問題を定式化すると以下のようになります $\operatorname*{argmin}_{L(\omega)}$

 α

ここで

ω: 調整対象となる重みベクトル =評価関数ファイルの中身

L:目的関数

自己対戦の棋譜を用いた 大規模機械学習 (続)

$$L(\omega) = \sum_{i} l(\omega, \varphi_i, \omega', {\varphi'}_i, w_i)$$

ここで

1:損失関数

i: 自己対戦で生成した棋譜の局面の通し番号

 φ_i :i番目の局面に対する浅い探索のPVの末端ノードの特徴量ベクトル

ω': 自己対戦に用いた重みベクトル=評価関数ファイル

 φ'_{i} :i番目の局面に対する自己対戦中の深い探索のP \lor の末端ノードの特徴量ベクトル

以里ハフトル

 w_i :i番目の局面の手番が対局で勝利したかどうか

自己対戦の棋譜を用いた 大規模機械学習 (続)

- ・損失関数として考えられる関数は
 - 1. 評価値の差の2乗
 - 2. 評価値から推定した勝率[1]の差の2乗
 - 3. 評価値から推定した勝率の確率分布の交差エントロピー
 - 4. 評価値から推定した勝率と勝敗の交差エントロピー
- ・ 平成将棋合戦ぽんぽこでは『elmo』が採用した3.と4.の線形和を使用しています

自己対戦の棋譜を用いた 大規模機械学習 (続)

- 機械学習は以下の条件で行っています
 - 深い探索の深さ:6・8・10・12
 - 浅い探索 ①手読み+静止探索 置換表無効化
 - データ量: 50・5・1億局面×複数回
 - 学習手法 ミニバッチ勾配降下法
 - 最適化手法: Adam[2] Cyclical Learning Rate[3]
 - ミニバッチサイズ: 100万局面
 - 最小学習率: ○.1
 - **最大学習率**: 2.0
 - 学習率サイクル数:10
 - 損失関数: elmo型
 - 次元下げ 左右対称・先後対称
 - 棋譜データの評価値の絶対値の上限なし
- 他のソフトに比べ、より深い探索による評価値を学習データとしていま す

自己対戦の棋譜を用いた 大規模機械学習 (続)

- ・ 実際の作業手順は...
 - 」 学習用の棋譜を生成する
 - 2. 誤差の測定に使う検証用の棋譜を生成する
 - 3. 機械学習により評価関数を生成する
 - 4. 過去の評価関数と自己対戦を行う
 - 5. 以下繰り返し...
- 以上をJenkins+Pythonスクリプト等で自動的 に行えるようにしています

参考文献

- [1] https://twitter.com/issei_y/status/589644174275674112
- [2] Diederik Kingma and Jimmy Ba (2015): "Adam: a method for stochastic optimization," the 3rd International Conference for Learning Representations (ICLR 2015).
- [3] Cyclical Learning Rates for Training Neural Networks, Leslie N. Smith; 2017 IEEE Winter Conference on Applications of Computer Vision
- [4] 海野裕也, 岡野原大輔, 得居誠也, 徳永拓之 (2015): "オンライン機械学習 (機械学習プロフェッショナルシリーズ)," 講談社

ご支援ご愛顧のほどよろしくお願い申し上げます